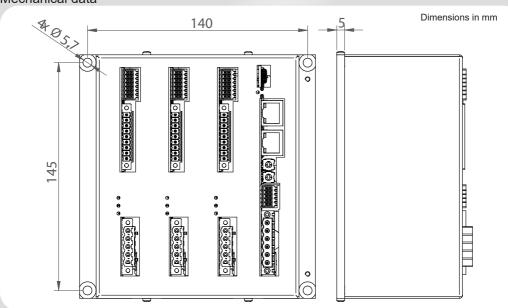


SW5D3070x473-xx - Controller

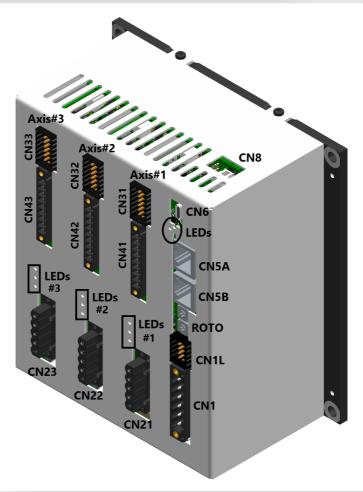
Installation instructions

Refer to installation use and maintenance manual for more information.


3 Axis stepper drive technical data:

- DC power supply: 24 ÷ 80 Vdc
- · DC logic supply: 24 Vdc (mandatory and isolated)
- Phase current: up to 11 Apeak for each motor
- · Chopper frequency: ultrasonic 40KHz
- Stepless Control Technology (65536 position per turn)
- · Protections against over current, over/under voltage, overheating, short circuit between motor phase-to-phase and phase-to-ground
- Industrial-Ethernet interface (see ordering code)
- Incremental Encoder (isolated): 5V Differential (RS422) or Single-Ended (TTL/CMOS) (see ordering code)
- Absolute Encoder (isolated): 5V Endat2.2 or BiSS-C or SSI interface (see ordering code)
- USB Service interface for programming and real time debugging (isolated)
- Safe Torque Off (STO) inputs (opto-coupled)
- 12 digital inputs (opto-coupled)
- 6 digital outputs (opto-coupled)
- 3 analog inputs (isolated)
- Dimensions: 155 x 150 x 80 mm (without connectors)
- Protection degree: IP20
- Pollution dearee 2
- Overvoltage Category II (not directly connected to supply mains)
- · Short Circuit Current: 5 KA
- · Protection Class: Class I Equipment
- Category C3 following standard EN 61800-3
- Working temperature: 5°C ÷ 40°C
- Storage temperature: -25°C ÷ 55°C
- Humidity: 5% ÷ 85% not condensing

Mechanical data


Short SW5D3070x473-xx Rev. 0.0.00 Pag. 1 of 8

Ordering codes

System code	Fieldbus	Feedback
SW5D3070 R 473-3 0	Powerlink	Incremental encoder
SW5D3070 R 473-3 5	Fowerlink	Absolute encoder
SW5D3070 E 473-3 0	Modbus TCP/IP	Incremental encoder
SW5D3070 E 473-3 5	IVIOUDUS TOP/IP	Absolute encoder
SW5D3070 H 473-3 0	EtherCAT	Incremental encoder
SW5D3070 H 473-3 5	EulerOAT	Absolute encoder
SW5D3070 T 473-3 0	Profinet	Incremental encoder
SW5D3070 T 473-3 5	Prolinet	Absolute encoder
SW5D3070 I 473-3 0	Ethernet/IP	Incremental encoder
SW5D3070 I 473-3 5	Eulernet/IP	Absolute encoder

System connections

System connection

CN1: Power supply

6 positions, male, with pitch 5.08mm

Positive DC power supply input	PWR_IN	VIN	CN1.1
Positive DC power supply input	PWR_IN	VIN	CN1.2
Negative DC power supply input	PWR_IN	GND	CN1.3
Negative DC power supply input	PWR_IN	GND	CN1.4
Not connected		N.C.	CN1.5
Protective Earth input		PE	CN1.6

Drives are intended for installation in Overvoltage Category II not connected directly to supply mains.

Discharge time of the internal capacitors on the DC power supply.

Wait at least No.30 seconds after disconnecting DC power supply Time required for the capacitors to a safe discharge to a level below 60 Vdc.

CN21, CN22,	CN23:	Motors (one connector for each motor)

9 position	ns, male with	pitch 3.5mm	
CN2x.1	Phase A	PWR_OUT	Motor output phase A
CN2x.2	Phase A/	PWR_OUT	Motor output phase A/
CN2x.3	Phase B	PWR_OUT	Motor output phase B
CN2x.4	Phase B/	PWR_OUT	Motor output phase B/
CN2x.5	PE_M		Motor protective Earth input

CN41, CN42, CN43: Encoders (one connector for each motor)

9 position	9 positions, male with pitch 3.5 mm								
Type	Incremental encoder	Absolute encoder							
CN4x.1	ENCA+	CLK+							
CN4x.2	ENCA-	CLK-							
CN4x.3	ENCB+	DATA+							
CN4x.4	ENCB-	DATA-							
CN4x.5	ENCZ+	n.c.							
CN4x.6	ENCZ-	n.c.							
CN4x.7	+:	5V							
CN4x.8	0	V							
CN//v Q	Cable shield	connection							

14 positions, male double row with pitch 2.54mm

CN31, CN32, CN33: Inputs and Outputs (one connector for each motor)

CN3x.1	OUT1	Digital output 1
CN3x.2	VSS	Negative reference for OUT1
CN3x.3	OUT0	Digital output 0
CN3x.4	VSS	Negative reference for OUT0
CN3x.5	IN3+	Positive side digital input 3
CN3x.6	IN3-	Negative side digital input 3
CN3x.7	IN2+	Positive side digital input 2
CN3x.8	IN2-	Negative side digital input 2
CN3x.9	IN1+	Positive side digital input 1
CN3x.10	IN1-	Negative side digital input 1
CN3x.11	IN0+	Positive side digital input 0
CN3x.12	INO-	Negative side digital input 0

CN3x.14 AVSS Neg CN1L: 24 Vdc Logic Supply & STO

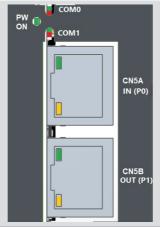
IN ANO

Citiza za tuo zogio cuppi, u cic								
10 position	10 positions, male double row with pitch 2.54mm							
CN1L.1	24VDC_IN	24Vdc logic supply input						
CN1L.2	VSS_IN	VSS logic supply input						
CN1L.3	24VDC_OUT	24Vdc output						
CN1L.4	VSS_OUT	VSS output						
CN1L.5	24VDC_OUT	24Vdc output						
CN1L.6	VSS_OUT	VSS output						
CN1L.7	STO1+	STO1 positive input side						
CN1L.8	STO1-	STO1 negative input side						
CN1L.9	STO+2	STO2 positive input side						
CN1L.10	STO-2	STO2 negative input side						

CN3x.13

Logic Supply and STO inputs are 24 Vdc MANDATORY and ISOLATED.

Analog input 0


Negative reference for IN AN0

System connections

CN5A / CN5B: Industrial Ethernet Interface

Dual RJ45 connectors (P0-P1)

100BASE-TX (100Mb/sec) ports - Accept standard Ethernet cable (CAT5 or higher)

Industrial Ethernet Li	EDs				
Led name	Powerlink	EtherCAT	ModbusTCP	Profinet	Ethernet/IP
СОМ0	BS - Green	RUN - Green	SF - Red	SF - Red	MS - Green/Red
COM1	BE - Red	ERR - Red	BF - Red	BF - Red	Ns - Green/Red
P0 (on CN5A)	L/A P0 - Green	L/A IN - Green	LINK - Green ACT - Yellow	LINK - Green RX/TX - Yellow	LINK - Green ACT - Yellow
P1 (on CN5B)	L/A P1 - Green	L/A OUT - Green	LINK - Green ACT - Yellow	LINK - Green RX/TX - Yellow	LINK - Green ACT - Yellow

Refer to the software manual for more details.

CN6: USB Service Interface

USB 2.0 Type C connector

This connection is possible only with software provided by Ever Motion Solutions.

Kit code: USBC SERV0EE-1M

CN8: Canbus interface (isolated)

3 positions	male with pitch 2.54mm
1	CAN_H
2	CAN_L
3	CAN CND

Roto-Switches settings

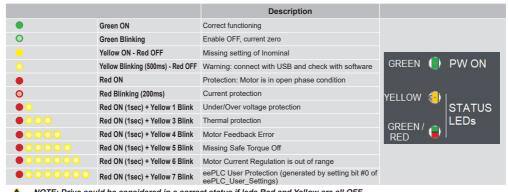
Drives are equipped with two Roto-Switches within it's possible to set the Node ID. Refer to the Software Manual for more details.

Node ID Selection (Hexadecimal Value)									
R1 x 16 (MSD)	0	0	0	0		2	2	 F	F
R2 x 1 (LSD)	0	1	2	3		С	D	 Е	F
Node ID #	SW settings (default)	1	2	3		44	45	 254	255

x 16 (MSD) R1

R1 (MSD): Most Significant Digit that must by multiplied per 16. R2 (LSD): Least Significant Digit that must by multiplied per 1.

Example: 5C

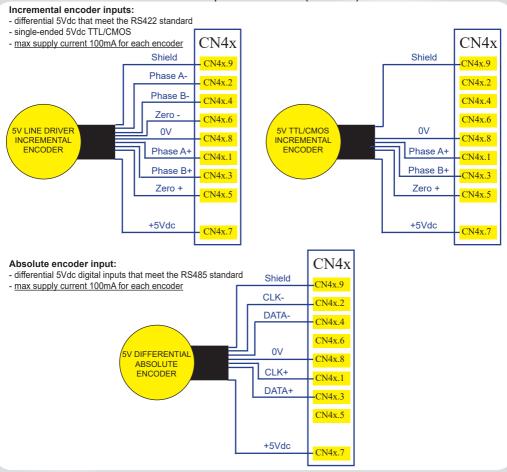

R1 = 5 ---- > 5x16 = 80

R2 = C ---> 12x1 = 12

Node ID = 92

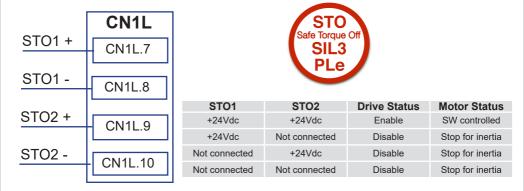
Short_SW5D3070x473-xx Rev. 0.0.00 Pag. 4 of 8

Working Status LEDs (three LEDs for each motor)

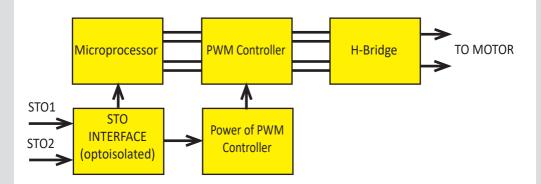


 \wedge

NOTE: Drive could be considered in a correct status if leds Red and Yellow are all OFF. In general:


- · Led Red indicates an alarm or a drive protection
- · Led Yellow indicates a warning

Incremental and Absolute Encoder input connection (isolated)

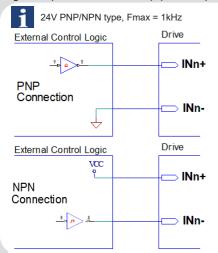


Safe Torque Off inputs (STO)

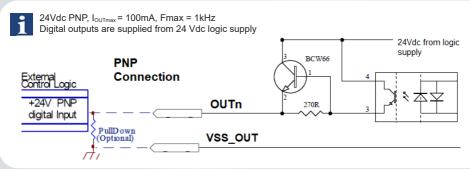
2 terminals, 24V compatible (optoisolated)

Principle of operation:

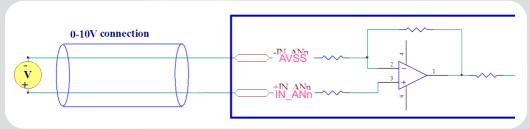
The drive has a safety feature that is designed to provide the Safe Torque Off (STO) function. Two input signlas are provided which, when not connected, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When both STO signals are activated (current is flowing in the input diodes of the optocouplers), the control core will be able to control the on/off state of the PWM outputs.


If not using the STO feature, the inerface must be connected to an external +24Vdc supply in order enabled the drive.

If a drive in operation mode is disabled by STO signal, it immediately finish to produce torque but the motor continues to run by inertia until it can stop.


Short_SW5D3070x473-xx Rev. 0.0.00 Pag. 6 of 8

Digital inputs connection (opto-coupled)



Characteristics	MIN.	MAX.	Unit
Supply voltage	19	24	Vdc
Inputs frequency		1	kHz
Threshold switching voltage	10		Vdc
Current at 24 Vdc		10	mA

Digital outputs connection (opto-coupled)

Analog inputs connection (isolated)

Mating connectors

Connector	Description			
CN1	Dinkle 2ESSM-06P or Phoenix 1655238			
CN1L	Dinkle 0156-1B10-BK			
CN21 / CN22 / CN23	Dinkle 2ESHM-05P-BK or Phoenix IC 2,5/ 5-STF-5,08 BK			
CN31 / CN32 / CN33	Dinkle 0156-1B14-BK			
CN41 / CN42 / CN43	Dinkle 0221-2809-BK or Phoenix FMC 1,5/ 9-STF-3,5 BK			
CN5A/B	Ethernet standard cables (CAT5 or higher)			
CN6	USB 2.0 Type-C			

Cables section

Function	Cable	
	Minimum	Maximum
Power supply and PE	0.20 mm ² (AWG24)	2.50 mm² (AWG12)
Motors outputs	0.20 mm ² (AWG24)	2.50 mm ² (AWG12)
Logic supply & STO	0.14 mm² (AWG26)	0.50 mm ² (AWG20)
Feedback	0.20 mm² (AWG24)	1.50 mm² (AWG16)
Digital Inputs / Outputs	0.14 mm² (AWG26)	0.50 mm ² (AWG20)
FiedIbus interfaces	Ethernet standard cables (CAT5 or higher)	

Verify the installation

- Check all connection: power supply and inputs/outputs
- Make sure all settings right for the application.
- Make sure the power supply is suitable for the drive.
- If possible, remove the load from the motor shaft to avoid that wrong movements cause damage.
- Enable the current to the motor and verify the applied torque.
- Enable a movement of some steps and verify if the rotation direction is the desired one.
- Disconnect the power supply, connect the load on the motor and check the full functionality.

Analysis of malfunctions

When any of the following situations occur, the drive is placed in a fault condition.

DEFECT	CAUSE	ACTION
Intervention of the thermal protection.	Can be caused by a heavy working cycle or a high current in the motor.	Improve the drive cooling by natural orfan air flow. Consider to use a motor with a higher torque vs current rating.
Intervention of the current protection.	Short circuit on the motor powering stage(s) of the drive.	Check motor windings and cables to remove the short circuits replacing faulty cables or motor if necessary.
Intervention of the over/under voltage protection.	Supply voltage out of range	Check the value fo the supply voltage
Open phase motor protection.	Motor windings to drive not proper	Check motor cables and connections to the drive.

When any of the following situations occur, the drive doesn't work and isn't placed in an error condition.

DEFECT	CAUSE	ACTION
Noisy motor movement with vibrations.	Can be caused by a lack of power supply to a phase of the motor or a poor regulation of the winding currents.	Check the cables and connections of the motor and/or change the motor speed to avoid a resonance region.
The external fuse on the power supply of the drive is burned.	Can be caused by a wrong connection of the power supply.	Connect the power supply correctly and replace the fuse.
At high speed, the motor torque is not enough.	Can be due to a "self-limitation" of motor current and torque.	Increase the motor current (always within the limits), increase the supply voltage, change motor connection from series to parallel.

Ever Motion Solutions

e-MOTION SOLUTIONS

Via del Commercio, 2/4 - 9/11 Loc. San Grato Z. I 26900 - L O D I - Italy

Phone +39 0371 412318 - Fax +39 0371 412367 email:infoever@evermotionsolutions.com

web: www.evermotionsolutions.com

Short_SW5D3070x473-xx Rev. 0.0.00 Pag. 8 of 8