

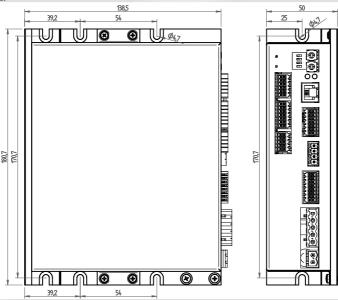
AW5A9750x2x1-xx - Controller

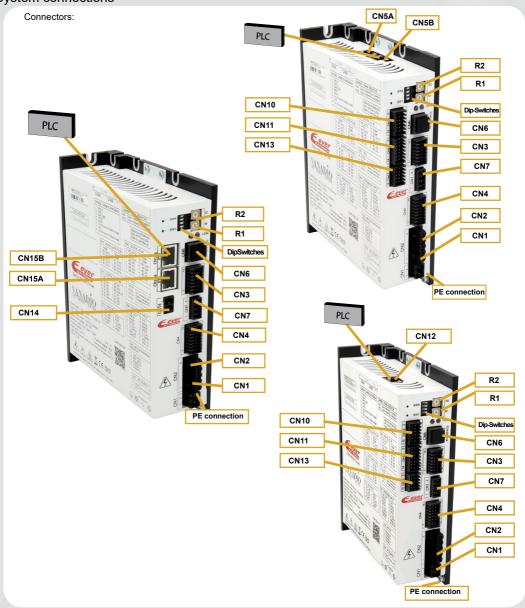
Installation instructions

Refer to installation use and maintenance manual for more information.

Brushless AC Servo drive technical data

- Phase current: up to 3.0 Arms (peak of 12 Arms for 1s max with DCmax = 10%)
- Motor power: up to 750W
- · Chopper frequency: ultrasonic 40 kHz
- Protections against: over current, over/under voltage, overheating, short circuit between motor phase-to-phase and phase-to-ground
- · Canbus + Modbus RTU or Ethernet or EtherCAT or Profinet communication interfaces
- Incremental Encoder Input: 5V Differential (RS422) or 5V single-ended TTL/CMOS (isolated)
- Hall input: 5V Single-Ended (TTL/CMOS) hall effects (isolated)
- Absolute Encoder Input: 5V BiSS-C or SSI interface (isolated)
- Safe Torque Off (STO) inputs (isolated)
- · Service SCI interface for programming and real time debugging
- up to 16 digital inputs (isolated)
- up to 12 digital outputs (isolated)
- · up to 2 analog inputs (isolated)
- up to 2 analog outputs (isolated) · Dimensions: see image below (without connectors)
- Protection degree: IP20
- Pullution dearee 2
- Overvoltage Category III
- · Short Circuit Current: 5 KA
- · Protection Class: Class I Equipment
- Working temperature 5°C ÷ 50°C; Storage temperature -25°C ÷ 55°C
- Humidity: 5% ÷ 85% not condensing



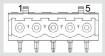


Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 1 of 16

Available models

System code	STO	Communication interfaces	Digital inputs	Digital outputs	Analogue inputs	Analogue Outputs
AW5A9750 L 2 2 1-20	Yes	Canbus + Modbus RTU	4	3	0	0
AW5A9750 L 2 G 1-20	Yes	Canbus + Modbus RTU	16	12	2	2
AW5A9750 E 2 G 1-20	Yes	Ethernet (Modbus TCP/IP)	16	12	2	2
AW5A9750 H 2 2 1-20	Yes	EtherCAT	4	3	0	0
AW5A9750 T 2 2 1-20	Yes	Profinet	4	3	0	0

System connections


CN1: AC Power supply

2 positions, pitch 5.08mm, PCB header connector							
CN1.1	ACin	PWR IN	AC power supply input				
CIVI. I	ACIII	L AALZ_IIA					
CN1.2	ACin	PWR IN	AC power supply input				

CN2: Motor connection

	5 position, pitch 5.08mm single row, PCB socket connector							
	CN2.1	U	PWR_OUT	Motor phase U				
	CN2.2	V	PWR_OUT	Motor phase V				
	CN2.3	W	PWR_OUT	Motor phase W				
CN2.4 BRK_RES		BRK_RES	PWR_OUT	Braking resistor input				
	CN2.5	+DC_BUS	PWR_OUT	DC bus output				

CN6: Service SCI Interface

RJ11, 6P4C, PCB header connector						
CN6.1	TX/RX	Transmit / Receive Line				
CN6.2	DE/RE	Drive Enable Negated / Receive Enable				
CN6.3	+5V	+5V power out				
CN6.4	GND	GND power out				

NOTE: This connection is only possible with harAWare and software provided by Ever Motion Solutions.

CN7: STO inputs (mandatory)

4 positions, pitch 3.81mm, PCB header connector						
CN7.1	STO1 -	PWR_IN	STO1 input negative side			
CN7.2	STO1 +	PWR_IN	STO1 input positive side			
CN7.3	STO2 -	PWR_IN	STO2 input negative side			
CN7.4	STO2 +	PWR_IN	STO2 input positive side			

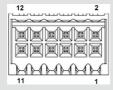
STO inputs are 24Vdc MANDATORY and ISOLATED

CN3: Digital Inputs / Outputs

14 position	14 positions, pitch 2.54mm double row, PCB header connector					
CN3.1	+B0_IN3	DIG_IN	Digital B0_IN3 positive side			
CN3.2	-B0_IN3	DIG_IN	Digital B0_IN3 negative side			
CN3.3	+B0_IN2	DIG_IN	Digital B0_IN2 positive side			
CN3.4	-B0_IN2	DIG_IN	Digital B0_IN2 negative side			
CN3.5	+B0_IN1	DIG_IN	Digital B0_IN1 positive side			
CN3.6	-B0_IN1	DIG_IN	Digital B0_IN1 negative side			
CN3.7	+B0_IN0	DIG_IN	Digital B0_IN0 positive side			
CN3.8	-B0_IN0	DIG_IN	Digital B0_IN0 negative side			
CN3.9	B0_OUT0	DIG_OUT	PNP digital output B0_OUT0			
CN3.10	B0_OUT 1	DIG_OUT	PNP digital output B0_OUT1			
CN3.11	V-OUT	PWR_IN	24 Vdc supply for digital output			
CN3.12	VSS	PWR_IN	Negative input supply for digital output			
CN3.13	B0_OUT2	DIG_OUT	PNP digital output B0_OUT2			
CN3.14	VSS	PWR IN	Negative input supply for digital output			

CN4: Feedback connection

16 positi	16 position, pitch 2.54mm double row, PCB header connector					
CN4.1	SHIELD	1	Cable shield connection for feedback interface			
CN4.2	HALL_C	DIG_IN	Hall effect signal C input			
CN4.3	HALL_B	DIG_IN	Hall effect signal B input			
CN4.4	HALL_A	DIG_IN	Hall effect signal A input			
CN4.5	DATA+	DIG_IN	Absolute encoder data input positive			
CN4.6	DATA-	DIG_IN	Absolute encoder data input negative			
CN4.7	CLK+	DIG_OUT	Absolute encoder clock output positive			
CN4.8	CLK-	DIG_OUT	Absolute encoder clock output negative			
CN4.9	ENCZ+	DIG_IN	Encoder Zero differential input positive			
CN4.10	ENCZ-	DIG_IN	Encoder Zero differential input negative			
CN4.11	ENCB+	DIG_IN	Encoder Phase B differential input positive			
CN4.12	ENCB-	DIG_IN	Encoder Phase B differential input negative			
CN4.13	ENCA+	DIG_IN	Encoder Phase A differential input positive			
CN4.14	ENCA-	DIG_IN	Encoder Phase A differential input negative			
CN4.15	+5E	PWR_OUT	+5Vdc power supply output			
CN4.16	0VE	PWR_OUT	Negative side of supply			

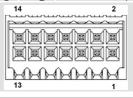


CN5A and CN5B: CANbus & Modbus Interfaces

RJ45, 8 p	RJ45, 8 position shielded, PCB header connector							
CN5.1	CAN_H	DIGITAL_I/O	Bus Line Dominant HIGH (Canbus)					
CN5.2	CAN_L	DIGITAL_I/O	Bus Line Dominant LOW (Canbus)					
CN5.3	CAN_GND	PWR_OUT	Signal Ground for Canbus					
CN5.4	Data +	DIGITAL_I/O	Positive RS485 signal (Modbus)					
CN5.5	Data -	DIGITAL_I/O	Negative RS485 signal (Modbus)					
CN5.6	Cto Cto between pins 6 of CN5A and CN5B		IN-OUT for CAN_SHLD (Canbus)					
CN5.7	0V_A	PWR_OUT	Signal Ground for Modbus					
CN5.8	Cto Cto between pins 8 of CN5A and CN5B		IN-OUT for CAN_V+ (Canbus)					

CN10: Digital Outputs #2 12 positions, pitch 2.54mm double row, PCB header connector CN10.1 +24Vdc PWR_IN 24Vdc supply for digital outputs on CN10 CN10.2 VSS#2 PWR_IN Negative reference for digital outputs on CN10 CN10.3 VSS#2 PWR_IN Negative reference for digital outputs on CN10 CN10.4 B0_OUT3 DIG_OUT PNP digital output B0_OUT3 CN10.5 B1_OUT0 DIG_OUT PNP digital output B1_OUT0 (PNP) CN10.6 B1_OUT1 DIG_OUT Digital output B1_OUT1 (PNP) CN10.7 B1_OUT2 DIG_OUT Digital output B1_OUT2 (PNP) CN10.8 B1_OUT3 DIG_OUT Digital output B1_OUT3 (PNP) CN10.9 B1_OUT4 DIG_OUT Digital output B1_OUT4 (PNP) CN10.10 B1_OUT5 DIG_OUT Digital output B1_OUT5 (PNP) CN10.11 B1_OUT6 DIG_OUT Digital output B1_OUT6 (PNP)

CN10.12 B1 OUT7 DIG OUT Digital output B1 OUT7 (PNP)


CN13: Analog I/O

10 positions, pitch 2.54mm double row, PCB header connector					
CN13.1	AVSS	PWR_OUT	Negative output reference for analog outputs		
CN13.2	OUT_AN0	AN_OUT	Analog output 0 positive side		
CN13.3	AVSS	PWR_OUT	Negative output reference for analog outputs		
CN13.4	OUT_AN1	AN_OUT	Analog output 1 positive side		
CN13.5	-IN_AN0	AN_IN	Analog input 0 negative side		
CN13.6	+IN_AN0	AN_IN	Analog input 0 positive side		
CN13.7	-IN_AN1	AN_IN	Analog input 1 negative side		
CN13.8	+IN_AN1	AN_IN	Analog input 1 positive side		
CN13.9	AGND	PWR_OUT	Negative output reference for potentiometer		
CN11.10	VPOT	PWR_OUT	Voltage supply output for potentiometers		

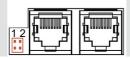
CN11: Digital Inputs #2

14 positions, pitch 2.54mm double row, PCB header connector					
CN11.1	B0_IN8	DIG_IN	Digital input B0_IN8		
CN11.2	B0_IN9	DIG_IN	Digital input B0_IN9		
CN11.3	B0_IN10	DIG_IN	Digital input B0_IN10		
CN11.4	B0_IN11	DIG_IN	Digital input B0_IN11		
CN11.5	B0_COM_IN	PWR_IN	Reference common inputs B0 on CN11		
CN11.6	B1_IN0	DIG_IN	Digital input B1_IN0		
CN11.7	B1_IN1	DIG_IN	Digital input B1_IN1		
CN11.8	B1_IN2	DIG_IN	Digital input B1_IN2		
CN11.9	B1_IN3	DIG_IN	Digital input B1_IN3		
CN11.10	B1_IN4	DIG_IN	Digital input B1_IN4		
CN11.11	B1_IN5	DIG_IN	Digital input B1_IN5		
CN11.12	B1_IN6	DIG_IN	Digital input B1_IN6		
CN11.13	B1_IN7	DIG_IN	Digital input B1_IN7		
CN11 14	B1 COM IN	PWR IN	Referece commom inputs B1 on CN11		

CN14: 24 Vdc Expansion Supply

2 positions, pitch 5.08mm, PCB header connector

CN14.1 VIN_EXP PWR_IN Positive DC expansion supply CN14.2 VSS_EXP PWR_IN Negative expansion supply



24 Vdc MANDATORY and ISOLATED

JUMPERS - Terminator Resistor

Position 1 120 ohm resistor INSERTED on Canbus network
Position 2 120 ohm resistor INSERTED on Modbus network

CN15A and CN15B: EtherCAT Interface

RJ45, 8 position shielded, PCB header connector

Dual RJ45 connectors (IN-OUT)

100BASE-TX (100Mb/sec) ports

Accept standard Ethernet cable (CAT5 or higher)

CN15A and CN15B: Profinet Interface

RJ45. 8 position shielded. PCB header connector

Dual RJ45 connectors (P1-P2) 100BASE-TX (100Mb/sec) ports

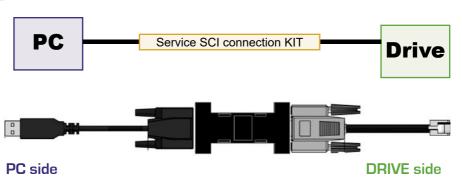
Accept standard Ethernet cable (CAT5 or higher)

CN12: Ethernet Interface

RJ45, 8 position shielded, PCB header connector

Dual RJ45 connectors (IN-OUT) 100BASE-TX (100Mb/sec) ports

Accept standard Ethernet cable (CAT5 or higher)



Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 4 of 16


Service SCI connection

This connection is <u>only</u> possible with hardware and software provided by Ever. Kit code: SW5_SERV00-SL or SW5-SERV00-EE.

Dip-Switches and Roto-Switches settings

S	SW1 - U0 Software defined
ON	
OFF	X (Default)

	Drives's Baud Rate Selection						
SW2	SW3	SW4	Modbus	Canbus			
OFF	OFF	OFF	115200	1 M			
OFF	OFF	ON	57600 (default)	500 K (default)			
OFF	ON	OFF	38400	250 K			
OFF	ON	ON	19200	125 K			
ON	OFF	OFF	9600	100 K			
ON	OFF	ON	4800	50 K			
ON	ON	OFF	2400	50 K			
ON	ON	ON	1200	50 K			

	Node-ID Selection								
R2	0	0	0	0		2	2	 7	7
R1	0	1	2	3		С	D	 E	F
Node-ID#	Reserved	1 (default)	2	3		44	45	 126	127

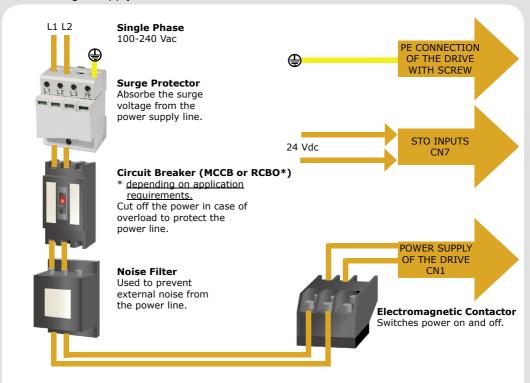
	Reserved						
8	8				•••	F	F
0	1					E	F
Reserved							

NOTE: the device reads the Dip-Switches and the Roto-Switches only during the Power up. If it's necessary a setting change, shut down the system, change the settings and start up the system again to make the changes operating.

In EtherCAT, Profinet and Ethernet versions the functionality of the Dip-Switches & Roto-Switches depends on the Firmware installed on the drive (Refer to the Software Manual).

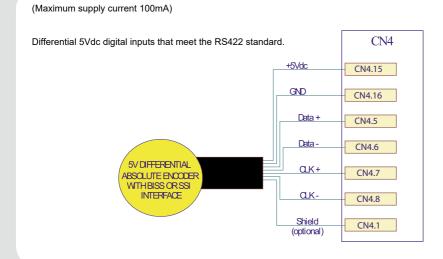
Working Status (LED)

	Visualiza	tion status	Description
1	•	Green ON	Correct functioning.
2	0	Green BLINKING	Enable OFF, current zero
3	•	Blue ON	Error: connect with Service SCI kit and check with software
4	• •	Blue ON Yellow ON	Drive in boot mode. A new firmware should be downloaded to drive
5	• 0	Blue ON Red BLINKING (200 ms)	Initialization phase. Should last few seconds. While in this condition the drive is not fully operational.
6		Yellow ON	Missing setting of Inominal
7		Yellow BLINKING (500 ms)	Warning: connect with Service SCI kit and check with software
8	•	Red ON	Protection: motor is in open phase condition
9	0	Red BLINKING (200 ms)	Current protection
10	• 0	Red ON (1 sec) Yellow 1 BLINK	Under/Over voltage protection
11	•000	Red ON (1 sec) Yellow 3 BLINK	Thermal protection
12	•0000	Red ON (1 sec) Yellow 4 BLINK	Motor Feedback Error
13	•00000	Red ON (1 sec) Yellow 5 BLINK	Missing Safe Torque Off
14	•000000	Red ON (1 sec) Yellow 6 BLINK	Motor Current Regulation is out of range
15	•000000	Red ON (1 sec) Yellow 7 BLINK	eePLC User Protection (generated by setting bit #0 of eePLC_User_Settings)

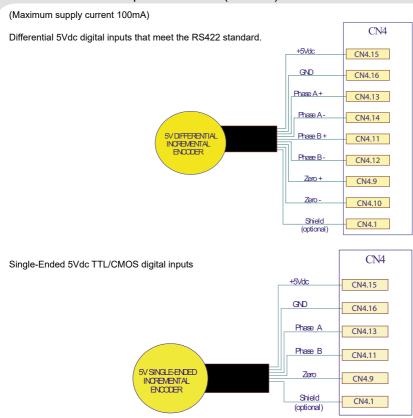

Note: Drive could be considered in a correct status if leds Red, Yellow and Blue are all OFF.

In general: - Led Blue indicates a software internal fault or a non-operative condition

- Led Red indicates an alarm or a drive protection


- Led Yellow indicates a warning

Power & Logic Supply connections


N.B. In order to comply with cURus certification other requirements must be met, refer to chapter UL REGULATION REQUIREMENTS.

Absolute Encoder input connection (isolated)

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 7 of 16

Incremental Encoder input connection (isolated)

Hall signals input connection (Maximum supply current 100mA)

Single-Ended 5Vdc TTL/CMOS digital inputs.

CN4

+5Vdc CN4.15

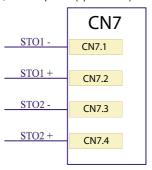
GND CN4.16

Hall A CN4.4

Hall B CN4.3

HALL EFFECTS

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 8 of 16


Shield

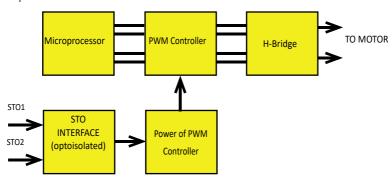
(optional)

CN4.1

Safe Torque Off inputs (STO)

2 terminals, 24V compatible (optoisolated)

STO1	STO2	Drive Status	Motor Status
+24Vdc	+24Vdc	Enable	SW controlled
+24Vdc	Not connected	Disable	Stop for inertia
Not connected	+24Vdc	Disable	Stop for inertia
Not connected	Not connected	Disable	Stop for inertia



STO inputs are optoisolated.

	Safety specifications				
Safety function	on	STO	Safe Torque Off		
	Category	4	In accordance with EN ISO 13849-1		
	Performance Level	PLe	In accordance with EN ISO 13849-1		
:	Safety Integrity Level	SIL3	In accordance with EN ISO 13849-1 table 3		
DC _{avg}	[%]	99	Average Diagnostic Coverage		
PFH _D	[1/h]	7,04 x 10 ⁻⁹	Probability of dangerous failure per hour		
T Service Life	e [Years]	20	In accordance with EN ISO 13849-1		
Type test The STO function has been certified by an independent testing body.			s been certified by an independent testing body.		

Refer to the "Safety Manual_STO on SW5A9030-AW5A9750-AW5A6750 Serie_GB" for more details of the Safe Torque Off function characteristics. Contact EVER in order to have a copy of the manual.

Principle of operation:

The drive has a safety feature that is designed to provide the Safe Torque Off (STO) function. Two input signlas are provided which, when not connected, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When both STO signals are activated (current is flowing in the input diodes of the optocouplers), the control core will be able to control the on/off state of the PWM outputs.

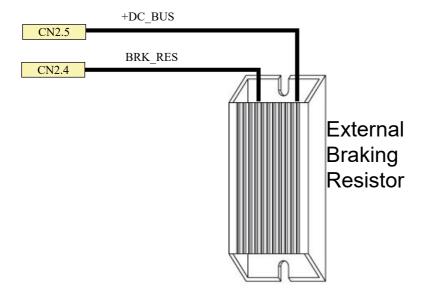
If not using the STO feature, both signals must be connected to a 24Vdc supply in order enabled the drive.

If a drive in operation mode is disabled by STO signal, it immediately finish to produce torque but the motor continues to run by inertia until it can stop.

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 9 of 16

Braking Resistor connection

Internal circuit drives a breaking resistor when the mechanical energy of the motor is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition.


Cut-In Voltage +DC_BUS > 390 Vdc : output is on, external breaking resistor is dissipating energy

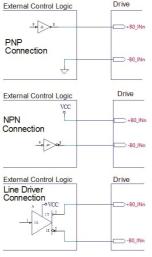
Drop-Out Voltage +DC_BUS < 380 Vdc: output is off, regen resistor not dissipating energy

Tolerance ±2 Vdc for either Cut-In or Drop-Out voltage

DC Bus Capacitance: 750uF

Input voltage	Energy Absorpion Capacity of the DC Bus
100 Vac	49.54 joules
120 Vac	46.24 joules
240 Vdc	13.84 joules

External braking resistor must be placed more than 50mm from the drive on notflammable and heat resistant surfaces. The metal case of the braking resistor can reach high temperatures. Take all necessary measures to avoid possible contacts in the final installation.


+DC_BUS is an High-Voltage circuit (up to 400Vdc) so take all necessary measures to avoid possible contacts in the final installation.

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 10 of 16

B0 IN0 to B0 IN3 inputs

i

Differential PNP, NPN and Line Driver type (isolated)
5 - 24Vdc INPUTS

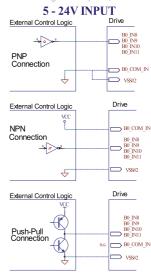
Standard (B0_IN0 and B0_IN1)					
Characteristics	MIN.	MAX.	Unit		
Supply voltage	5	24	Vdc		
Inputs frequency		10	kHz		
Threshold switching voltage	1.9	2.4	Vdc		
Current at 5 Vdc		6.28	mA		
Current at 24 Vdc		8.75	mA		

High speed (B0_IN2 and B0_IN3)					
MIN.	MAX.	Unit			
5	24	Vdc			
	250	kHz			
1.9	2.4	Vdc			
	7.52	mA			
	10	mA			
	MIN. 5 1.9	MIN. MAX. 5 24 250 1.9 2.4 7.52			

B1_IN0 to B1_IN7 inputs

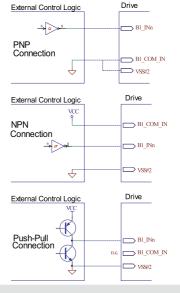
Single-Ended PNP, NPN, Push-Pull (isolated)

N.B.: All these inputs must be connected with the same configuration (PNP, NPN or Push-Pull).


Standard (B1_IN0 to B1_IN7)					
Characteristics	MIN.	MAX.	Unit		
Supply voltage	5	24	Vdc		
Inputs frequency		250	Hz		
Threshold switching voltage	2.5		Vdc		
Current at 5 Vdc		2	mA		
Current at 24 Vdc		12	mA		

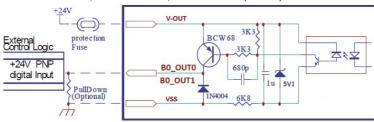
B0_IN8 to B0_IN11 inputs

i

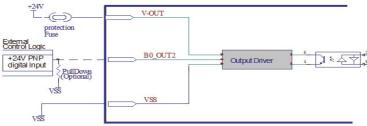

Single-Ended PNP, NPN, Push-Pull (isolated)

N.B.: All these inputs must be connected with the same configuration (PNP, NPN or Push-Pull).

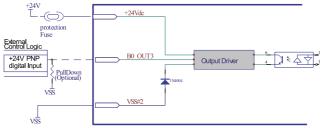
Standard (B0_IN8 to B0_IN11)					
Characteristics	MIN.	MAX.	Unit		
Supply voltage	5	24	Vdc		
Inputs frequency	-	100	kHz		
Threshold switching voltage	2	-	Vdc		
Current at 5 Vdc	-	2	mA		
Current at 24 Vdc		12	mA		


5 - 24V INPUT

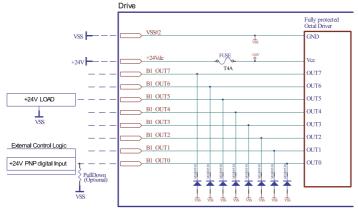
B0_OUT0 and B0_OUT1


PNP with VouTmax=24Vdc, IOUTmax=100mA, Fmax = 250 kHz (isolated)

B0_OUT2


PNP with VouTmax=24Vdc, IOUTmax=1.3A, Fmax = 1 kHz (isolated)

B0_OUT3

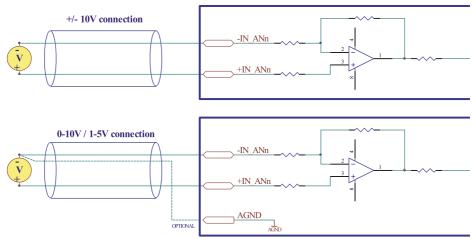

PNP with VOUTmax=24Vdc, IOUTmax=500mA, Fmax = 1 kHz (isolated)

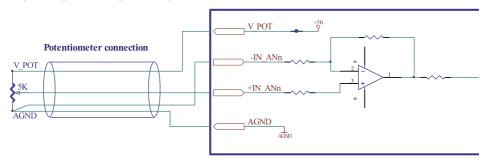
B1_OUT0 to B1_OUT7

i

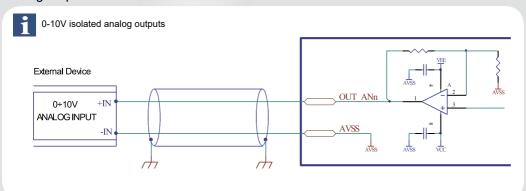
PNP with VOUTmax=24Vdc, IOUTmax=100mA, Fmax = 250 Hz (isolated)

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 12 of 16


Analog inputs connection


Isolated configurable analog inputs.

The resolution of the analog inputs depends from the type of the connection which could be defined by software: differential or potentiometer.


DIFFERENTIAL CONNECTION

POTENTIOMETER CONNECTION

Analog outputs connection

Mating connectors

Connector	Description	Connector	Description
CN1	Phoenix 1758856	CN7	Phoenix 1839636
CN2	Phoenix 1920972	CN10	Dinkle 0156-1B12-BK
CIVZ	FIIOCIIIX 1920972	CN11	Dinkle 0156-1B14-BK
CN3	Dinkle 0156-1B14-BK	CN12	Ethernet standard cables (CAT5 or higher)
CN4	Dinkle 0156-1B16-BK	CN13	Dinkle 0156-1B10-BK
		CN14	Phoenix 1827635
CN5A / CN5B	RJ45 8 positions	CN15A / CN15B	Ethernet standard cables (CAT5 or higher)

Section of the cables

Function	Cable			
	Minimum	Maximum		
Power supply and PE	0.5 mm² (AWG20)	2.5 mm² (AWG12)		
Motor output	0.5 mm ² (AWG20)	2.5 mm² (AWG12)		
Feedback	0.12 mm² (AWG26)	0.5 mm² (AWG20)		
Inputs / Outputs	0.12 mm² (AWG26)	1.3 mm ² (AWG16)		
CANbus/Modbus interface	Min. 0.25 mm² (AWG23)	CANbus CiA-CANOpen		
Ethernet interfaces	Ethernet standard cables (CAT5 or higher)			

Verify the installation

- Check all connection: power supply, logic supply and inputs/outputs.
- Make sure all settings right for the application.
- Make sure the power supply is suitable for the drive.
- If possible, remove the load from the motor shaft to avoid that wrong movements cause damage.
- Enable the current to the motor and verify the applied torque.
- Enable a movement of some steps and verify if the rotation direction is the desired one.
- Disconnect the power supply, connect the load on the motor and check the full functionality.

Drive's fault analysis

When any of the following situations occur, the drive is placed in a fault condition.

DEFECT	CAUSE	ACTION	
Intervention of the thermal protection.	Can be caused by a heavy working cycle or a high current in the motor.		
Intervention of the current protection.	Short circuit on the motor powering stage(s) of the drive.	Check motor windings and cables to remove the short circuits replacing faulty cables or motor if necessary.	
Intervention of the over/under voltage protection.	Supply voltage out of range.	Check the value of the supply voltage.	
Open phase motor protection.	Motor windings to drive not proper connection.		

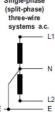
When any of the following situations occur, the drive doesen't work and isn't placed in an error condition.

DEFECT	CAUSE	ACTION	
Noisy motor movement with vibrations.	Can be caused by a lack of power supply to a phase of the motor or a poor regulation of the winding current.	Check the cables and connections of the motor and/or change the motor speed to avoid a resonance region.	
The external fuse on the power supply of the drive is burned.	Can be caused by a wrong connection of the power supply.	Connect the power supply correctly and replace the fuse.	
At high speed, the motor torque is not enough.	Can be due to a 'self-limitation' of motor current and torque.	Increase the motor current or increase the supply voltage (always within the limits of the motor).	

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 14 of 16

UL regulation requirements

In order to comply with cURus certification the following requirements must be met:


Electrical ratings

INPUT

Input Voltage Range	Maximum Input Current	
100/50 - 240/120 VAC 1 Ph 50/60 Hz	3.0 Arms	

The drive must be supplied by single-phase (split-phase) three-wire system a.c

Phase-to-Phase / Phase-to-Earth Voltage		
	100/50 - 240/120 VAC 1 Ph	
Single-phase		

OUTPUT

Maximum Output Voltage	Motor Phases Number	Maximum Output Current	Maximum Output Motor Power
340 Vdc	3	3.0 Arms	0,75 kW

- Solid state short circuit protection

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the Manufacturer Instructions, National Electrical Code and any additional local codes.

- External Fuses and Short Circuit Protection on Supply

Suitable for use on a circuit capable of delivering not more than 5000 Arms symmetrical amperes, 250 Vac maximum when protected by semiconductor fuses model FWX-20A14F by Cooper Bussmann LLC

- Discharge time of the capacitors on the AC power supply

WARNING/CAUTION – Risk of Electric Shock Wait at least No.153 seconds (3 minutes) after disconnecting AC power supply Time required for the capacitors to a safe discharge to a level below 50 Vdc.

- Temperature rating of field installed conductors

For field installed conductor use 60/75°C wires only and use copper conductors only.

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 15 of 16

Ever Motion Solutions
Via del Commercio, 2/4 - 9/11
Loc. San Grato Z. I
26900 - L O D I - Italy
Phone +39 0371 412318 - Fax +39 0371 412367
email:infoever@evermotionsolutions.com web: www.evermotionsolutions.com

Short_AW5A9750x2x1-xx Rev. 0.5.00 Pag. 16 of 16